Isomorphic Graphs

Isomorphism of Graphs

Definition: The simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there is a one-to-one and onto function f from V_{1} to V_{2} with the property that a and b are adjacent in G_{1} if and only if $f(a)$ and $f(b)$ are adjacent in G_{2}, for all a and b in V_{1}. Such a function f is called an isomorphism. Two simple graphs that are not isomorphic are called non-isomorphic.

Isomorphism of Graphs (cont.)

- Note

\% In short, out of the two isomorphic graphs, one is a tweaked version of the other. An unlabelled graph also can be thought of as an isomorphic graph.

- If $\mathrm{G}_{1} \cong \mathrm{G}_{2}$ then -
- $\rightarrow\left|V\left(\mathrm{G}_{1}\right)\right|=\left|\mathrm{V}\left(\mathrm{G}_{2}\right)\right|$
- $\rightarrow\left|E\left(G_{1}\right)\right|=\left|E\left(G_{2}\right)\right|$
- Degree sequences of G_{1} and G_{2} are the same.
- If the vertices $\left\{V_{1}, V_{2}, \ldots V_{k}\right\}$ form a cycle of length k in G_{1}, then the vertices $\left\{f\left(V_{1}\right), f\left(V_{2}\right), \ldots f\left(V_{k}\right)\right\}$ should form a cycle of length k in G_{2}.

Isomorphism of Graphs (cont.)

Example: Show that the graphs $G=(V, E)$ and $H=(W, F)$ are isomorphic.

Solution: The function f with $f\left(u_{1}\right)=v_{1}$, $f\left(u_{2}\right)=v_{4}, f\left(u_{3}\right)=v_{3}$, and $f\left(u_{4}\right)=v_{2}$ is a one-to-one correspondence between V and W. Note that adjacent vertices in G are u_{1} and u_{2}, u_{1} and u_{3}, u_{2} and u_{4}, and u_{3} and u_{4}. Each of the pairs $f\left(u_{1}\right)=v_{1}$ and $f\left(u_{2}\right)=v_{4}, f\left(u_{1}\right)=v_{1}$ and $f\left(u_{3}\right)=v_{3}, f\left(u_{2}\right)=v_{4}$ and $f\left(u_{4}\right)=v_{2}$, and $f\left(u_{3}\right)=v_{3}$ and $f\left(u_{4}\right)=v_{2}$ consists of two adjacent vertices in H.

Isomorphism of Graphs (cont.)

- It is difficult to determine whether two simple graphs are isomorphic using brute force because there are n ! possible one-to-one correspondences between the vertex sets of two simple graphs with n vertices.
- The best algorithms for determining weather two graphs are isomorphic have exponential worst case complexity in terms of the number of vertices of the graphs.
- Sometimes it is not hard to show that two graphs are not isomorphic. We can do so by finding a property, preserved by isomorphism, that only one of the two graphs has. Such a property is called graph invariant.
- There are many different useful graph invariants that can be used to distinguish non-isomorphic graphs, such as the number of vertices, number of edges, and degree sequence (list of the degrees of the vertices in non increasing order).

Isomorphism of Graphs (cont.)

Example: Determine whether these two graphs are isomorphic.

Solution: Both graphs have eight vertices and ten edges.
They also both have four vertices of degree two and four of degree three.
However, G and H are not isomorphic. Note that since $\operatorname{deg}(a)=2$ in G, a must correspond to t, u, x, or y in H , because these are the vertices of degree 2. But each of these vertices is adjacent to another vertex of degree two in H, which is not true for a in G.

Alternatively, note that the subgraphs of G and H made up of vertice degree three and the edges connecting them must be isomorphic. But the subgraphs, as shown at the right, are not isomorphic.

Isomorphism of Graphs (cont.)

Example: Determine whether these two graphs are isomorphic.

G

H

Solution: Both graphs have six vertices and seven edges.
They also both have four vertices of degree two and two of degree three.
The subgraphs of G and H consisting of all the vertices of degree two and the edges connecting them are isomorphic. So, it is reasonable to try to find an isomorphism f.

We define an injection f from the vertices of G to the vertices of H that preserves the degree of vertices. We will determine whether it is an isomorphism.

The function f with $f\left(u_{1}\right)=v_{6}, f\left(u_{2}\right)=v_{3}, f\left(u_{3}\right)=v_{4}$, and $f\left(u_{4}\right)=v_{5}, f\left(u_{5}\right)=v_{1}$, and $f\left(u_{6}\right)=$ v_{2} is a one-to-one correspondence between G and H. Showing that this correspondence preserves edges is straightforward, so we will omit the details here. Because f is an isomorphism, it follows that G and H are isomorphic graphs.

See the text for an illustration of how adjacency matrices can be used for this verification.

Isomorphism of Graphs (cont.)

Example: Determine whether these two graphs are isomorphic.

G

H

Solution: Both graphs have six vertices and seven edges.
They also both have four vertices of degree two and two of degree three.
The subgraphs of G and H consisting of all the vertices of degree two and the edges connecting them are isomorphic. So, it is reasonable to try to find an isomorphism f.

We define an injection f from the vertices of G to the vertices of H that preserves the degree of vertices. We will determine whether it is an isomorphism.

The function f with $f\left(u_{1}\right)=v_{6}, f\left(u_{2}\right)=v_{3}, f\left(u_{3}\right)=v_{4}$, and $f\left(u_{4}\right)=v_{5}, f\left(u_{5}\right)=v_{1}$, and $f\left(u_{6}\right)=$ v_{2} is a one-to-one correspondence between G and H. Showing that this correspondence preserves edges is straightforward, so we will omit the details here. Because f is an isomorphism, it follows that G and H are isomorphic graphs.

See the text for an illustration of how adjacency matrices can be used for this verification.

Isomorphism of Graphs (cont.)

Theorem:

Two simple graphs G and H are isomorphic if and only if Gis isomorphic to H^{-} Solution:

- If f is an isomorphism from G to H , then f is a vertex bijection preserving adjacency and non-adjacency, and hence f preserves non-adjacency and adjacency in G and is an isomorphism from G to H . The same argument applies to the converse since the complement of Gis G.

Note:

- All the above conditions are necessary for the graphs G_{1} and G_{2} to be isomorphic, but not sufficient to prove that the graphs are isomorphic.
$\%\left(G_{1} \equiv G_{2}\right)$ if and only if $\left(G_{1}^{--} \cong G_{2}^{-}\right)$where G_{1} and G_{2} are simple graphs.
$\because\left(G_{1} \equiv G_{2}\right)$ if the adjacency matrices of G_{1} and G_{2} are the same.
$\because\left(\mathrm{G}_{1} \equiv \mathrm{G}_{2}\right)$ if and only if the corresponding subgraphs of G_{1} and G_{2} (obtained by deleting some vertices in G_{1} and their images in graph G_{2}) are isomorphic.

Isomorphism of Graphs (cont.)

Theorem:

Two simple graphs G and H are isomorphic if and only if Gis isomorphic to H^{-} Solution:

- If f is an isomorphism from G to H , then f is a vertex bijection preserving adjacency and non-adjacency, and hence f preserves non-adjacency and adjacency in G and is an isomorphism from G to H . The same argument applies to the converse since the complement of Gis G.

Note:

- All the above conditions are necessary for the graphs G_{1} and G_{2} to be isomorphic, but not sufficient to prove that the graphs are isomorphic.
$\%\left(G_{1} \equiv G_{2}\right)$ if and only if $\left(G_{1}^{--} \cong G_{2}^{-}\right)$where G_{1} and G_{2} are simple graphs.
$\because\left(G_{1} \equiv G_{2}\right)$ if the adjacency matrices of G_{1} and G_{2} are the same.
$\because\left(\mathrm{G}_{1} \equiv \mathrm{G}_{2}\right)$ if and only if the corresponding subgraphs of G_{1} and G_{2} (obtained by deleting some vertices in G_{1} and their images in graph G_{2}) are isomorphic.

Isomorphism of Graphs (conclusion)

If two greptos me isomorphic tran they have

The same number of varices $=6$

$$
" \quad \because \quad \text { expos }=9
$$

31

$$
\text { Component }=1
$$

$$
a_{1}=k_{9,3}
$$

h_{2}

h_{3}

- $(3,3,3,3,3,3)$
degree sequence
If two graphs are isomorpinic and one is them Contains a cycle or particular lerfat, tres the Same must be true of the ores graph. respects, they are not i isomorphic However, having all those values in common
(vi) $a,<a \xi$ are isomoninic if these complements are isomorphic. doer not imply that two gopiss are isomempic.

$$
a_{1} \simeq a_{3}
$$

$$
\bar{a}_{1} \nsim \bar{a}_{3}
$$

Algorithms for Graph Isomorphism

- The best algorithms known for determining whether two graphs are isomorphic have exponential worst-case time complexity (in the number of vertices of the graphs).
- However, there are algorithms with linear average-case time complexity.
- You can use a public domain program called NAUTY to determine in less than a second whether two graphs with as many as 100 vertices are isomoprhic.
- Graph isomorphism is a problem of special interest because it is one of a few NP problems not known to be either tractable or NP-complete .

Applications of Graph Isomorphism

- The question whether graphs are isomorphic plays an important role in applications of graph theory. For example,
- chemists use molecular graphs to model chemical compounds. Vertices represent atoms and edges represent chemical bonds. When a new compound is synthesized, a database of molecular graphs is checked to determine whether the graph representing the new compound is isomorphic to the graph of a compound that this already known.
- Electronic circuits are modeled as graphs in which the vertices represent components and the edges represent connections between them. Graph isomorphism is the basis for
- the verification that a particular layout of a circuit corresponds to the design's original schematics.
- determining whether a chip from one vendor includes the intellectual property of another vendor.

